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SUMMARY

Large-eddy simulations (LES) of the flow over two-dimensional sinusoidal waves with a very low grid
resolution are presented. A dynamic two-parameter subgrid scale (SGS) model is employed. A configura-
tion characterized by a wave length of 0.6096 m, a maximum slope of 0.497, and a bulk velocity of 10
m s−1 is initially considered. Comparisons with experimental data, and with the results of a previous LES
show that, in spite of the very low grid resolution, the mean flow and both the viscous and the pressure
drag forces are well predicted. Some details of the flow, such as the presence of a secondary flow, are also
captured. Thus, additional LES are carried out to investigate the effect of the Reynolds number (Re), and
of the wave amplitude. In particular, the dependence of viscous and pressure drag on these parameters
is studied and compared with the results of similar analyses in the literature. Copyright © 2001 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Turbulent flow over wavy terrains is of great interest to many environmental and engineering
applications, and there have been many studies on this subject (see Reference [1] for a review).
In particular, it has been shown that wavy terrains exert a net drag on turbulent flow over
them, and this is primarily communicated by the pressure field. It has been observed that the
incorporation of orographic drag from boundary-layer flow over hills can lead to an important
improvement of numerical weather predictions. However, the scales of orography contributing
to such a drag are usually smaller than those resolved in weather-prediction/climate models,
and thus, the orographic drag must be introduced as an external parameter. An accurate
parameterization of wind–wave exchanges is also needed in the models of air–sea wave
interaction processes [2].
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As in many other problems, numerical simulation can be a useful complementary tool,
together with experimental and analytical studies. Direct numerical simulations of channel
flow over wavy surfaces (see, for instance, References [3,4]) have not only successfully
reproduced many of the laboratory observations, but have also provided a large number of
details on the flow structure. However, direct numerical simulation is limited to low Reynolds
numbers (Re), and hence, to small wave dimensions. Thus, to simulate the flows of interest in
most of the applications, a turbulence model is needed. However, it is known [1] that
simulations based on the Re-averaged Navier–Stokes equations (RANS), with classical
eddy-viscosity closure models, are not appropriate to describe a large part of the flow; in
particular, the so-called ‘outer region’, in which turbulent eddies are advected over the wave
more rapidly than they interact each other. Other difficulties are related to the recirculating
zones that occur in the leeward side of likewise moderate steep waves. The use of more
complex full second-order closure models, as for instance in Reference [5], is a possibility;
however, the flow structure itself suggests that LES could be a useful tool in tackling this type
of flow, as also pointed out in Reference [1]. Indeed, a few examples can be found in the
literature of LES of the convective boundary-layer [6–8], and, more recently, of the channel
flow over sinusoidal wavy surfaces [9–11]. However, it also arises that, for LES, the grid
resolution is a critical problem. Indeed, in Reference [10], the authors state that the lowest grid
level should be in the viscous sub-layer, i.e., within approximately ten wall units, and in their
LES, they use an even finer vertical grid spacing near the wall. A similar near wall resolution
is used in Reference [11]. As a consequence, the Re of the flows simulated in References [10,11]
are moderate. A less resolved LES of higher Re flows is documented in Reference [9].
Nonetheless, although the LES prediction of the shear stress agrees well with experimental
data, the pressure drag is largely underestimated. Finally, the problem of grid resolution in
LES of the flow over wavy surface is also pointed out in Reference [1], while, among the
features suggested in Wood N., submitted, 1998, for a well designed LES of flows over
complex terrains, one finds the requirement for the first grid point to be within the inner
surface layer, which is usually of the order of one tenth of the inner region, i.e., a very thin
layer indeed in real flows (see Reference [1]).

Clearly, if LES is to be used as a predictive tool for practical applications, such as flows over
ocean waves or hills, only a much coarser resolution can be achieved owing to computer
limitations. The main goal of this paper is to investigate whether LES with very coarse
resolution can at least successfully predict the pressure and viscous contributions to the surface
drag over wavy terrains, and the wave effects on the mean flow. Thus, this study could give
important indications of the capabilities of LES in predicting problems of practical interest in
this field and, also, on the possibilities of using LES to derive parameterizations to be
incorporated in more simplified models. To this purpose, we simulate the aerodynamically-
smooth case considered in Reference [9], but with a computational grid having half of the
nodes in each direction than that used in the simulations in Reference [9]. Thus, the neutrally
stratified flow in a channel between a free-slip upper surface and fixed two-dimensional
sinusoidal waves is considered, with a wave length of 0.6096 m, a maximum slope of 0.497 and
a bulk velocity of 10 m s−1. Clearly, the assumption of a two-dimensional sinusoidal wave
geometry and of flow periodicity in the streamwise and spanwise directions represents
significant simplifications compared with realistic flows over ocean waves or hills. However, to
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our knowledge, well documented experimental and numerical data are available in the
literature for only these simplified cases. Moreover, these types of flows contain most of the
fluid dynamics complexity of practical flows, such as, for instance, flow distortion or separated
wakes, and thus, they are well suited for validation.

Generally, in LES and, in particular, when a very coarse grid resolution is used, a critical
point is the modeling of the subgrid scale (SGS) terms. In References [9,10], the SGS terms are
modeled by an eddy-viscosity, which is a function of the SGS kinetic energy, obtained by
solving an additional transport equation. In our opinion, eddy-viscosity SGS models are not
suited for the flows under investigation, for the same reasons as the RANS closure models
based on eddy-viscosity concepts. Conversely, dynamic mixed models, [12–14], which include
an eddy-viscosity part, as well as a scale-similar contribution, have recently shown a good
behavior also for non-equilibrium flows [11,15]. Moreover, these models do not require the
solution of any additional differential equation, and do not contain any ad hoc adjusted
coefficient, as the model parameters are computed dynamically [16] from the resolved flow
field. Thus, the two-parameter dynamic model proposed in Reference [14] is used in the present
study.

The results obtained in the present LES are appraised by comparison with the experimental
and LES data reported in Reference [9]. As good agreement is observed, additional LES
simulations are carried out to study the effect of bulk velocity and wave amplitude. In
particular, concerning the wave amplitude, comparisons are provided with the results of the
simulations at lower Re, described in Reference [10].

2. PROBLEM FORMULATION

2.1. SGS modeling and numerical method

For the incompressible and neutrally stratified flows considered here, the governing equations
are the Navier–Stokes and continuity equations (omitted here for sake of brevity). When a
filter is applied to these equations, the effects of the unresolved SGS appear in the SGS stress
tensor as:

tij=uiuj−uiuj (1)

in which ui is the velocity component in the i direction, and the overbar denotes the filtering
operation.

The SGS effect is modelled by the dynamic two-parameter model, proposed by Salvetti and
Banerjee [14], in which the SGS stress tensor has the following expression:

tij−
dij

3
tkk= −2CD2�S �Sij+K

�
Lij

m−
dij

3
Lkk

m � (2)

where D( is the filter width, and S( ij is the resolved strain rate tensor:
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S( ij=
1
2
�(ūi

(xj

+
(ūj

(xi

�
and �S( �= (2S( ijS( ij)1/2; Lij

m= ūiūj− ū̄iū̄j is the modified Leonard term, and represents the resolved
part of the SGS stress. The two unknown coefficients C and K can be computed locally,
following the dynamic procedure [16], as shown in Reference [14]. This model is stable only
with local averaging of the model coefficients [17].

For our computations, the governing equations are transformed into a general curvilinear
coordinate system, and discretized on a co-located grid using a finite volume approach,
following the technique proposed in Reference [18]. The solver uses two sets of variables,
defining Cartesian velocities and pressures at cell centers, and contravariant volume fluxes at
the cell faces. A fractional step method is employed, and the pressure is obtained by solving
a Poisson equation with a multigrid algorithm. Time marching is semi-implicit; the global
formal accuracy is second order in both space and time. The details of the numerical method
can be found in References [18,19]. This numerical approach has been extensively validated
[18], and has been successfully used with dynamic mixed SGS models in previous LES of
different types of flows [12,17,20,21]. Recently, the same numerical solver and the two-parame-
ter dynamic SGS model have also been employed in a highly resolved LES over sinusoidal
waves at lower Re [11].

2.2. Flow conditions

The flow over fixed two-dimensional sinusoidal waves has been considered, with the same
geometry and conditions as found in Reference [9].

The domain size is given as 2l×2l×l, respectively, along the x, y and z direction (Figure
1); l denotes the wave length and, as in Reference [9], is equal to 0.6096 m.

The wave shape is taken as follows:

z(x)=a cos(kx) (3)

where k=2p/l is the wave number and a is the wave amplitude. The first simulations assume
a=0.04825 m, resulting in 2a/l#0.158 and maximum slope ak#0.497.

Periodicity is imposed both along streamwise (x) and spanwise (y) directions. The wavy
lower boundary in the vertical direction is considered no-slip, while the top boundary is
considered free-slip and stress-free. The flow situation is illustrated in Figure 1(a).

The flow is driven by a mean pressure gradient; as no details of its value are provided in
Reference [9], it has been computed according to the procedure discussed below.

For an open channel, i.e., a channel with a no-slip flat wall and a free-slip and stress-free
upper boundary, the following relationship can easily be demonstrated:

u�=
'9xp H

r
(4)

in which H is the height of the channel, r is the fluid density, 9xp is the streamwise pressure
gradient which drives the flow, and u� is the effective friction velocity.
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Figure 1. Sketch of a vertical section of the computational domain (a) and grid (b).

When the lower wall has a wavy shape, Equation (4) is no longer valid, and it is not that
simple to achieve a relationship between the pressure gradient and the friction velocity. We
thus follow De Angelis et al. [3], who give a correction factor to correlate the mean pressure
gradient to the effective friction velocity:

u�=C1
'9xp H

r
(5)

The constant C1 is obtained by extrapolating the results in Reference [3] given for certain a/l
ratios. Taking a/l equal to 0.079, as in the present case, a value of 0.6824 is determined for
C1. Then, reverting Equation (5), we obtain the required gradient once the friction velocity has
been fixed. In the first part of this study, we assume, as in Reference [9]: u�=0.45 m s−1, and
a surface roughness z0=0.00003 m, which corresponds to the relatively smooth case in
Reference [9].
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In the experiments in Reference [9], the reference velocity is taken equal to the freestream
velocity, U0=10 m s−1. Clearly, because of the periodic boundary conditions employed in the
simulations, the concept of freestream velocity does not apply; however, for sake of consis-
tency, we decided to use the same value as in Reference [9] to adimensionalize the LES results.
Let us consider the bulk velocity, defined as the average velocity computed along the height
H(x) of the channel:

U0 b(x)=
1

H(x)
&H(x)

0

U(x, z) dz (6)

in which U(x, z) is the streamwise velocity averaged in time and in the y direction. As the mass
flux is constant and the depth of the channel varies along x, the bulk velocity also varies along
the streamwise coordinate. It will be verified in the next section that the average in the
streamwise direction of U0 b(x) is close to U0, and thus, in our case, the reference velocity
represents a mean bulk velocity, Ub.

In Table I, we summarize the values of the Re, based on different quantities, in this first
simulation.

The computational grid has 64×64×32 nodes along x, y and z, respectively. It is uniform
in the streamwise and spanwise directions, while in the vertical direction, nodes are clustered
near the wavy wall (see Figure 1(b)). Note that our grid has half of the points in each direction
than that used in Reference [9]; indeed, as discussed in the ‘Introduction’ section, one of the
aims of the present work is to investigate whether an LES with a very coarse grid resolution
can reproduce at least the global effects of waves on the flow. However, we decided to use a
stretched grid in the z direction to have at least one computational point in the so-called ‘inner
region’ near the surface (see Reference [1]). The height of this region, l, can be estimated, as
suggested in Reference [1], from the following equation:

l�0.5k2l log−1� l
z0

�
(7)

In our case, this gives l�0.0086 m and l+ = lu�/n�275. The first computational point is at
a distance of approximately 146.7 wall units from the wavy surface, and the minimum grid
spacing is Dz+#293, while near the upper boundary, it becomes Dz+#775. Consequently,
our vertical grid resolution immediately close to the wall is approximately the same as in
Reference [9], in which a uniform grid in all directions has been used. However, note that it
is much larger than in the LES carried out for lower Re in References [10,11].

Table I. Parameters related to the simulation

Rez 0
ReH Reau�9xpU0#Ub Tref

10 m s−1 0.0609 s330000.92417 5000.45 m s−10.88 N m−3

ReH=Ub · H/n, Rez 0
=u� · z0/n, Rea=Ub · a/n, Tref=l/U0.
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Finally, if we had followed the recommendations given in Wood N., submitted, 1998, for a
‘well designed’ LES of the flow over wavy walls, the global number of points would have been:

3×2×270×
�n

2
�3�Zi

l

�3�l

z0

�1.65

(8)

in which n is the number of computational points in the inner surface layer and Zi is the
boundary layer depth. In our case, by taking n=2 and Zi#l, Equation (8) would give
approximately 2400 computational points in each direction.

The time step is equal to 1.5×10−4 s, and has been chosen in order to ensure the stability
of the numerical method, which is explicit in the treatment of the convective terms. Clearly,
this time step corresponds to a time resolution much higher than that in space.

3. RESULTS AND DISCUSSION

3.1. Validation

Mean velocity values are computed by averaging the field over the spanwise direction. In
Reference [9], this is carried out from a single instantaneous field around t=16 Tref. The
reference time is defined as Tref=l/U0. In Figure 2 we show that, in our simulation, a perfect
periodicity has not yet been achieved around 16 Tref; this can be owing either to the different
initial conditions or to the fact that we are using a smaller sampling ensemble, because our grid
has half of the points in each direction of that employed in Reference [9]. Conversely, a

Figure 2. Mean u-velocity profiles above the crests and troughs. Data refer to t=16 Tref. z % denotes the
vertical distance from the wave surface.
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practically periodic situation is obtained by averaging in time over quite a long interval
(:7.4 Tref=0.45 s), as can be seen in Figure 3. For this reason, we will refer to the latter mean
values, and in the next pictures, data will be given, following Reference [9], averaging also
among the same phase locations along the x direction. For the velocity distributions above the
fourths of wavelength, we will keep profile data at 1/4l and 5/4l separated from one another
owing to the larger bias.

In Figure 4, the profiles of the streamwise mean velocity, normalized by U0, are presented
above the crests and troughs of the waves, whereas in Figure 5, the profiles above the fourths
of wavelength are shown. Our LES results are compared with the numerical and the
experimental ones taken from Reference [9].

From these profiles, we computed the mean bulk velocity, Ub, as explained in Subsection
2.2. The calculated Ub is 9.6 m s−1, which correlates well to the fixed U0 and, thus, gives an
a posteriori support to the mean pressure gradient calculation.

From Figures 4 and 5, we can assert that our results are in general good agreement with
those given in Reference [9] but, especially for profiles above the crests, we may appreciate a
better correspondence with the experiments.

However, in our simulations, reversed flow is appreciable near the wave troughs, even after
quite a long averaging in time, while it is not present in the mean velocity profiles obtained in
both experiments and calculations in Reference [9]. Nonetheless, it is pointed out in Reference
[9] that flow separation was expected in troughs, as the maximum slope of the present case in
0.497 and ak#0.3 is generally considered to be the critical slope for separation, although there
is some Re dependence. The experimental mean velocity profiles in Reference [9] were obtained
from hot-wire probes, which can not differentiate between positive and negative velocities, and

Figure 3. Mean u-velocity profiles above the crests and troughs. Data refer to average over time
Dt:7.4 Tref.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 617–642



COARSE LARGE-EDDY SIMULATIONS OVER SINUSOIDAL WAVES 625

Figure 4. Mean u-velocity profiles above the crests and troughs.

Figure 5. Time-average u-velocity profiles above fourths of wavelength.

are thus unreliable to detect recirculating flow. However, from tufts tests and pressure
measurements, the authors conclude that their ‘subjective interpretation is that there is little or
no reverse flow’. The LES results in Reference [9] seem to give a support to this interpretation,

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 617–642
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as recirculations are observed only temporarily, without any signature in the mean flow. Note,
however, that the behavior of the flow in the downhill part of the wave observed in the LES
in Reference [9] could be significantly affected by the underestimate of the mean flow
acceleration in the uphill part of the wave. Thus, in our opinion, it is not clearly assessed by
the data in Reference [9] that there is no reverse mean flow near the wave troughs.

Furthermore, near the upper boundary the velocity keeps increasing as far as U/U0#1.2,
whereas data from Reference [9] do not seem to pass the value U/U0#1. The experiments
agree with the latter result. This discrepancy could be owing to the fact that we are working
with a mesh which has half of the points along the vertical direction than that used in
Reference [9], and is stretched along z, so that the resolution near the top boundary of the
channel is very poor. However, if the mean velocity profiles are computed later on in the
simulation, e.g., after 30–40 Tref, it has been found that U near the top boundary tends to U0,
in agreement with Reference [9]. As we are mainly interested in the behavior near the wavy
wall, and this does not change significantly later on in the simulation, for our analysis, we just
consider the profiles in Figures 4 and 5.

The spatial average of the streamwise component of the viscous stress, tns, at the wall is
evaluated as follows:

�t�=
1

2l

& 2l

0

tns
'

1+
�2pa

l

�2�
sin

2px
l

�2

dx (9)

Obviously the integral in Equation (9) has to be discretized and tns along the wave profile is
determined from the friction velocity u� computed at each x-location. A critical point in
coarse simulations, as well as in experiments, is indeed the calculation of the friction velocity
from the values of flow variables at the first available point near the wall. In order to make
the comparison meaningful, we follow the same approach as in Reference [9], i.e., we assume
the following logarithmic law satisfied for every z %2 along the ridge, z %2 being the distance from
the wavy surface of the first computational point:

U(z %)=
u�
k

log
�z %+z0

z0

�
(10)

in which k is the von Karman constant (we take k=0.4) and z % denotes the vertical distance
from the wavy surface. As pointed out also in Reference [9], there is clearly some uncertainty
about the accuracy of this approach, especially in separated regions. In Table II, we present
both the mean viscous stress �tns� and its component along the streamwise direction, i.e., the
viscous drag force per unit area �t�, nondimensionalized with rU0

2. The result agrees well with
the experimental value given by Reference [9] and, thus, our simulation seems to give good
description of the shear stress near the waves, even with quite a coarse grid. This can also be
seen from the distribution of the shear stress along the wave shown in Figure 6.

As far as the pressure drag is concerned, it is computed by averaging over 2l the pressure
only, whereas in Reference [9] they compute �Fp� as �p+un%

2�, where un% are the normal
velocity fluctuations; thus, in our case, we obtain:
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Table II. Mean viscous, pressure and total drag forces at the wavy wall

Variable �tns� �t� �Fp� �Fp�+�un%
2� �t�+�Fp�

0.00219 0.0021 0.00844 0.00851LES results 0.01061
0.0020 – 0.0027– 0.0047LES [9]

Exp [9] 0.01100.0085–0.0025–

All forces are per unit area and normalized by rU0
2.

rU0
2�Fp�= −ak

1
2l

& 2l

0

Dp sin(kx) dx

Once more, you may notice a better agreement with the experimental values than that obtained
in the LES in Reference [9].We also provide the average over 2l of the quantity p+un%

2; un%
2

values are collected from the first grid points above the wavy surface. Though the result shows
a perfect agreement with the one given in the experiments (see Table II) we will refer to �Fp�
to indicate the form drag experienced by the wave.

An important finding in the experiments in Reference [9] was that an organized secondary
flow developed, consisting in vortex pairs aligned with the mean flow. LES, although with
some differences, qualitatively gave a support for the existence of this secondary flow. The
presence of such a lateral flow has also been confirmed by more recent studies [3,10] and the
mechanisms of its formation are presently a subject of investigation [11]. We briefly investigate
here if such behavior also appears in our LES; however, we do not provide a detailed analysis
of this phenomenon here, as it is in our opinion, beyond the scope of the present paper, and

Figure 6. Distribution of the shear stress. Values are normalized dividing by rU0
2.
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a coarse LES is probably not able to give all the details needed for a deeper physical
investigation.

In Figure 7, the contour plots of w %= w−�w� are shown, at approximately 43 Tref, at
z#0.15l ; �·� denotes here average in time, and in the y direction. As in Reference [9], only
positive values are plotted to illustrate the vortical structures, which are characterized by
alternating regions of positive and negative w %. From Figure 7, two regions of positive w %
appear, which almost persist all over the length of the computational domain, indicative
perhaps of two pairs of vortices with the axis almost aligned with the x direction. This
conjecture is confirmed by the instantaneous (6, w) velocity vectors shown in Figure 8 for
different streamwise stations at 43 Tref. For instance, in the right part of the domain, two
counter rotating vortices are clearly visible, also identified by streamlines. As can be seen, they
persist along the wave and their centers are approximately at a constant height. Similar
structures, although less well defined, can also be observed in the left part of the domain. The
observations made from Figure 8 qualitatively agree well with the experimental findings in

Figure 7. Contour plot of w %=w−�w� at approximately 43 Tref. Positive contours only; the contour
interval is 0.05U0.
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Figure 8. Instantaneous (6, w) velocity vectors at 43 Tref. (a) Wave crest; (b) l/4; (c) wave trough.
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Reference [9]. In the LES in Reference [9] the presence of secondary flows was also observed,
but no coherent vortices were clearly detectable.

In a coarse LES, such as that presented here, the SGS model is expected to give a significant
contribution to the overall stress. The model employed here contains a part which is
proportional to the Leonard term that is not present in the eddy-viscosity models used in
previous LES of this type of flow [9,10]. Consistently with the results obtained in previous LES
with mixed SGS models [12,17], the Leonard term has been found to provide almost the whole
SGS stress. As an example, Figure 9 shows the contributions of the eddy-viscosity and
Leonard terms to the 13 component of tij (1 denotes the streamwise direction and 3 the normal
one) above crests and troughs, averaged in time and over the spanwise direction, and
adimensionalized by the mean shear stress at the wall t=ru�

2 . The same quantities are
reported in Figure 10 at fourths of the wavelength. Note that at all locations, for the present
coarse resolution, the Leonard term gives SGS stresses that are significantly larger than t, and
this SGS contribution is important whenever the shear in the flow is significant. This result is
consistent with the findings of previous a priori tests [14] and LES of different flows [17]. As
a consequence, at l=1/4 and above troughs, when the wave boundary layer is thicker or a
recirculation zone is present, the SGS stresses tends also to be significant rather far from the
wall. Similar considerations can also be made for the other components of tij and for SGS
energy dissipation (omitted here for sake of brevity). The parameter multiplying the Leonard
term K, averaged in time and over all the computational domain, has been found to be equal
to 1.2. This value is very similar to those found in a priori tests and LES for different flow

Figure 9. Mean t13 component profiles above the crests and troughs.
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Figure 10. Mean t13 component profiles above fourths of wavelength.

types at lower Re [14,17]; this indicates that the value of K obtained from the dynamic
procedure is rather independent of the flow type and Re. Conversely, for this high Re flow and
coarse grid resolution, the average ratio nt/n has been found to be significanlty larger than in
previous studies at lower Re [14,17] (nt/n#2.5 in the present case). However, as discussed
previously, also in this case, the eddy-viscosity term only gives a small contribution to SGS
stresses and energy.

3.2. Effects of the bulk 6elocity

As it has previously been shown that our numerical approach is able to give an accurate
prediction of the mean flow and forces at the wavy surface, LES is used here to study the effect
of the Re on the flow over sinusoidal periodic waves.

The flow configuration is thus the same as in Subsection 3.1 and the Res are varied by
changing the mean bulk velocity and consequently the u� value. New values for the mean
pressure gradient are calculated according to the procedure described in Section 2, once the
value of the bulk-velocity has been chosen. In Table III, the basic parameters of the different
simulations are summarized. The simulation at Ub=10 m s-1 is that described in detail in
Subsection 3.1. For the lower Ub cases, the same grid has been used, while for Ub=12 m s−1,
in order to maintain the same grid resolution as previously (i.e., the same Dx+, Dy+ and
Dz+), 80×80×40 nodes have been used.

In Figure 11, the profiles of the mean velocity, normalized by U0 (taken, as previously, equal
to the mean bulk velocity) are presented above the crests and troughs of the waves, for the

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 617–642



M. V. SALVETTI, R. DAMIANI, AND F. BEUX632

Table III. Parameters related to simulations performed with different Re

Ub 9xp u� ReH Rez 0
Rea Tref

1.2583 N m−3 0.54 m s−1 504 00012 m s−1 1.11 39 000 0.0508
10 m s−1 0.88 N m−3 0.45 m s−1 417 500 0.92 33 000 0.0609

0.559 N m−3 0.36 m s−18 m s−1 334 000 0.74 26 430 0.0762
0.314 N m−3 0.27 m s−1 250 500 0.55 19 800 0.10166 m s−1

ReH=Ub · H/n, Rez 0
=u� · z0/n, Rea=Ub · a/n, Tref=l/U0.

different Res. In Figure 12, the same profiles are shown above the fourths of wavelength. For
the cases at Ub=8 m s−1 and Ub=6 m s−1, the mean values have been obtained by averaging
in time over Dt:7.4 Tref as in the other two cases, but starting after approximately 24 Tref.
Indeed, these lower Re cases take longer to reach a periodic stabilized regime. Incidentally,
note that, as mentioned in Subsection 3.1, when the mean values are gathered quite late in the
simulation, the velocity near the upper boundary correctly tends to U0. At all the considered
locations, except than at troughs, the mean velocity values near the wall tend to decrease as the
Re increases. This effect is more significant in the windward side of the wave (at 3/4l and
above the crest), meaning that the flow acceleration induced by the wall is noticeably decreased
as the bulk velocity increases. As a consequence, the shear stress over the wave increases when
the bulk velocity is decreased, as shown in Figure 13. This implies that the viscous drag
coefficient �t� also increases for decreasing Ub, as can be seen in Table IV.

Coming back to Figure 11, note that for the highest Re, the reverse flow near the wave
troughs has disappeared. This effect has also been observed in previous experimental studies

Figure 11. Mean u-velocity profiles above the crests and troughs for different Re.
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Figure 12. Time-average u-velocity profiles above fourths of wavelength for different Re.

(see, for instance, Reference [22]), and is consistent with the fact that the flow acceleration
induced by the wave is lower as Re increases.

Another consequence is that, as the bulk velocity decreases, the pressure gradient along the
wave becomes steeper, resulting in a larger suction at the wave crest (not shown here for sake

Figure 13. Distribution of the shear-stress for different Re. Values are normalized dividing by rU0
2.
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Table IV. Mean viscous, pressure and total drag forces at the wavy wall for
different Re

�tns� �t� �Fp� �Fp�+�un%
2� �t�+�Fp�Rez 0

0.00203 0.00196 0.00781.11 0.00791 0.00976
0.92 0.00219 0.0021 0.0084 0.00851 0.01061

0.00252 0.00240.74 0.00964 0.00973 0.01204
0.00261 0.0025 0.009790.55 0.00988 0.01229

All forces are per unit area and normalized by rU0
2.

of brevity). Therefore, the pressure drag coefficient increases for decreasing Ub, as shown in
Table IV.

In order to analyze in more detail the dependence on the Re, in Figure 14 the shear and
pressure drag coefficients are reported as a function of Rel=ReH=Ubl/n. The value of �t�
for a fully developed flat channel flow is also shown for comparison; we used the law proposed
in Reference [23], �tFP�=0.0188Rel

−1/6, which is in good agreement with other results
proposed in the literature. It can be seen that the behavior with Re of the friction drag
coefficient obtained in our LES is similar to that of a flat channel flow; this was also found
in the experiments in Reference [22] for lower Re.

More surprisingly also, the pressure drag coefficient �Fp� decreases with Rel
−1/6, like the

viscous drag coefficient. Indeed, for all the Re, the pressure and viscous contributions represent
the 80% and 20% of the total drag, respectively. A classical simple parameterization of the
drag force per unit surface, based on analytical considerations for small amplitude sinusoidal
waves, when u�/Ub�0, is that proposed by Sykes [24]:

Figure 14. Viscous and form drag for different Re. Values are normalized dividing by rU0
2.
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rU0
2(�Fp�+�t�)#rU0

2�Fp�8 (ak)2u�2 (11)

in which u� is the friction velocity of the upstream undisturbed flow. Although in our
simulations, u�/Ub=0.045, the present results are in disagreement with formula (11). Indeed,
the viscous drag always represents a not negligible contribution to the total drag; moreover the
total drag force does not depend on u�

2 , but, consistent with the previous analysis and
remembering that Ub=U0, on Ub

11/6, and thus in our case, on u�11/6.

3.3. Effects of the wa6e shape

LES have been carried out also to investigate how the wave shape, particularly in terms of the
a/l ratio, could affect the flow characteristics. In Table V, the main flow parameters,
computed following the procedures illustrated in the previous sections, are shown for these
new simulations. As may be observed, the friction velocity and the bulk velocity are kept the
same as in the LES described in Subsection 3.1 (for which ak=0.497), together with the
number of grid points (64×64×32). The wave shape has been varied by changing the
amplitude. The wavelength, and hence, the domain dimensions, are kept constant.

In Figures 15 and 16 the mean u-velocity profiles are shown, adimensionalized as usual by
U0=Ub. First of all, note that separation is visible in the mean flow only for ak\0.4, and the
reverse flow region never reaches the streamwise stations at 1/4l and 3/4l. In our case also, at
ak=0.35, small recirculating flow regions are observed, although they are not apparent in the
mean flow at the streamwise sections presented in Figures 15 and 16. Usually, ak=0.3 is
indicated as the critical value at which separation starts (see, for instance, the experiments in
Reference [25] and the simulations in Reference [10]). This discrepancy, however, can be owing
to the fact that the Re in our simulations is significantly higher than in References [10,25], and
this has the effect of delaying the flow separation, as observed in the previous section and in
Reference [22].

In our simulations, ak=0.35 has been found to be a critical value also, as concerns the
behavior of the mean velocity in the windward part of the wave. Indeed, up to ak=0.35, the
near wall velocity increases with the wave amplitude, while for ak\0.35, the opposite trend is
observed. This behavior is particularly evident near the wave crests, where the maximum of the
near wall velocity is indeed obtained for ak=0.35.

The distribution of the shear stress along the wave is reported in Figure 17. Note that, for
ak]0.35, the slope of the t gradient is the same for all the wave amplitudes, while for

Table V. Main simulation parameters for the different wave shapes

9xp (N m−3)Rez 0
C1ReHd Reau� (m s−1)ak l (m) a (m)

0.25 0.45 0.92 417 500 16 700 0.6096 0.02425 0.5568 0.8549
0.35 0.45 0.92 417 500 23 350 0.6096 0.03396 0.6605 0.7849

0.74990.72360.038810.609626 700417 5000.920.450.4
0.497 0.45 0.92 417 500 33 000 0.6096 0.04825 0.88 0.6824

0.60981.09420.058210.609640 000417 5000.6 0.920.45
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Figure 15. Mean u-velocity profiles above the crests and troughs for different different wave amplitudes.

Figure 16. Mean u-velocity profiles above the fourths of wavelength for different different wave
amplitudes.

ak=0.25, it is significantly less steep and nearly symmetric, as found also for small slopes in
Reference [10]. Consistent with the previous analysis of the mean velocity, the shear stress near
the wall crests is maximum for ak=0.35, especially in the windward side, and then decreases
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Figure 17. Wall shear stress (t �w/(rU0
2)) distribution for the various analyzed wave amplitudes.

with the wave amplitude. As a consequence, the viscous drag per unit length averaged over the
wave also shows a maximum for ak=0.35 and decreases with increasing ak, as shown in
Figure 18.

Figure 18. Viscous, pressure and total drag, normalized by rU0
2 for different wave amplitudes.
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Following Equation (11), the pressure drag should be proportional to the square of ak ; this
has been confirmed by the LES in Reference [10], in which a good fit of the pressure drag
coefficients, obtained for different wave amplitudes, has been found to be 0.12(ak)2. The
coefficients �Fp� obtained in our simulations clearly show a steeper increase than (ak)2.
However, this is owing to the different normalization of our coefficients; indeed, to recover the
definition of pressure drag coefficient used in Reference [10], we should multiply our values by
approximately 2[(H−2a)/(H−a)]2. The rescaled coefficients, shown in Figure 18 by the open
squares, can be fit by 0.06(ak)2. By assuming a dependence of the pressure drag coefficient on
ReH

−1/6, as found in Subsection 3.2, as the ratio between the Re in our simulations and those
in the LES in Reference [10] is approximately 20, one can affirm that our results are also in
a satisfactory quantitative agreement with those in Reference [10]. However, an increase in
slope is observed for high values of ak, while a slight fall-off with slope is found in Reference
[10], which seems to be consistent also with the analytical results in Reference [26]. This
discrepancy could be owing to the higher Re in our simulations. Indeed, if the pressure
distribution along the wave (not shown here for sake of brevity) is considered, for high values
of ak, a significant peak is observed at the flow reattachment point, as found also in Reference
[10]. However, in our case, this peak is significantly higher than in Reference [10], resulting in
a larger pressure drag. A similar discrepancy was observed in Reference [10] by comparing the
LES pressure distribution with the experimental one obtained in Reference [22] at a higher Re,
and the authors suggest that ‘there may be some Reynolds-number effect’.

A rather good fit of the total drag coefficient, normalized by rU0
2, is 0.05(ak)2. Finally,

Figure 18 shows that, as expected, pressure drag tends to become the main part of the global
drag, as the wave amplitude increases.

As concerns the lateral flow, it seems that, as the wave amplitude increases, the streamwise
secondary vortices become more intense and persistent along the x direction. This can be seen
from the normal velocity fluctuations iso-contours on a plane at a distance of 0.045l from the
wave crest, shown in Figures 19 and 20 for ak=0.25 and ak=0.6 respectively. Indeed, in the
lowest amplitude case the regions of significant positive w % are clearly less and less persistent
along the streamwise direction than for the highest amplitude case. These observations are
confirmed also by the instantaneous velocity (6, w) vectors (not shown here for the sake of
brevity). A similar trend, i.e., a transverse flow becoming more important with the wave
steepness, was also observed in the LES in Reference [10], and it was used to explain the
significant increase in lateral velocity variance close to the wave upslope surface. We do not
provide here, however, an analysis of the lateral velocity variance, as it is, in our opinion,
beyond the scope of the present paper.

4. CONCLUDING REMARKS

LES of the flow over two-dimensional sinusoidal waves have been presented. They have been
carried out with a very low grid resolution, i.e., with minimum vertical grid spacing of about
300 wall units. A dynamic two-parameter SGS model has been employed. This model does not
require the solution of additional transport equations nor ad-hoc tuned parameters.
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Figure 19. Contour plot of w %=w−�w� for ak=0.2. Positive contours only; the contour interval is
0.05U0.

A configuration characterized by a wave length of 0.6096 m, a maximum slope of 0.497 and
a bulk velocity of 10 m s−1 has been initially considered. The capability of such a coarse LES
to capture, at least, the main features of the flow has been assessed by comparing our results
with experimental data, and with those of a more resolved LES [9]. It has been shown that the
mean flow and both viscous and pressure drag forces are well predicted. In spite of the lower
grid resolution, the global agreement with the experimental data is better than that obtained
in the previous LES in Reference [9]. This is probably owing to the different SGS models used
in the simulations. Some details, such as the presence of a secondary flow, are also captured.

Then LES has been used to study the effects of the bulk velocity and of the wave amplitude.
The increase of bulk velocity, and thus of Re, has been found to retard the flow separation,
consistent with the experiment in Reference [22]. Both viscous and pressure drag coefficients
have been found to decrease as Rel

−1/6 (or equivalently as ReH
−1/6); the viscous and pressure

relative contributions to the total drag remain constant when the bulk velocity varies. As
concerns the wave amplitude effect, the pressure drag coefficients, opportunely rescaled, have
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Figure 20. Contour plot of w %=w−�w� for ak=0.6. Positive contours only; the contour interval is
0.05U0.

been found to increase with (ak)2, as observed in Reference [10]. If the effects of the higher Re
in our simulations is taken into account, a satisfactory quantitative agreement is also found
with the results in Reference [10]. Conversely, the viscous drag shows a maximum at ak=0.35,
and then decreases. Indeed, the pressure drag tends to become the main part of the total drag
with increasing ak. As concerns flow separation, zones of reverse flow are observed for
ak]0.35. This value is larger than those found in previous studies [10,22,25]. However, this
could be owing to the higher Re of our simulations. Consistent with the experimental and
numerical observations in References [10,22], the extent of the recirculating zones becomes
larger with increasing ak. The intensity and the persistence of secondary streamwise vortices
also increases with ak, and this is again in qualitative agreement with the findings in Reference
[10].

From the present study one may conclude that coarse LES, with suitable SGS models, are
able to predict the main features of the flow over wavy surfaces, and, in particular, the viscous
and pressure surface drag and their dependence on the flow parameters. Thus, this LES
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approach could be applied in the future to estimate the drag over waves of arbitrary shape, for
instance representative of gravity ocean waves.
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